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ABSTRACT
For evaluating the progresses towards achieving the Sustainable
Development Goals (SDGs), a global indicator framework was developed
by the UN Inter-Agency and Expert Group on Sustainable Development
Goals Indicators. In this paper, we propose an improved methodology
and a set of workflows for calculating SDGs indicators. The main
improvements consist of using moderate and high spatial resolution
satellite data and state-of-the-art deep learning methodology for land
cover classification and for assessing land productivity. Within the
European Network for Observing our Changing Planet (ERA-PLANET),
three SDGs indicators are calculated. In this research, harmonized
Landsat and Sentinel-2 data are analyzed and used for land productivity
analysis and yield assessment, as well as Landsat 8, Sentinel-2 and
Sentinel-1 time series are utilized for crop mapping. We calculate for the
whole territory of Ukraine SDG indicators: 15.1.1 – ‘Forest area as
proportion of total land area’; 15.3.1 – ‘Proportion of land that is
degraded over total land area’; and 2.4.1 – ‘Proportion of agricultural
area under productive and sustainable agriculture’. Workflows for
calculating these indicators were implemented in a Virtual Laboratory
Platform. We conclude that newly available high-resolution remote
sensing products can significantly improve our capacity to assess several
SDGs indicators through dedicated workflows.
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1. Introduction

Since 2015, the community forming the Group on Earth Observation (GEO) has begun to support
and implement projects for the development of the Global Earth Observation System of Systems
(GEOSS). GEOSS points to a large collection of in-situ and satellite measurements and acts as the
largest access point for in-situ and satellite measurements for monitoring the state of the Earth
(Giuliani et al. 2017; Nativi et al. 2015). This approach offers a single Internet access point for
users seeking data, imagery and analytical software packages relevant to all parts of the globe (Nativi
et al. 2014).
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The ERA-PLANET Horizon 2020 project ‘The European Network for Observing our Changing
Planet’ is a contribution of the European Community for addressing the objectives of international
agreements such as the Sustainable Development Goals (SDGs), the Paris Agreement on Climate and
the Sendai Framework for Disaster Risk Reduction (Aitsi-Selmi et al. 2015). One of the four strands,
GEOEssential, of the project is focusing on Resource Efficiency and Environmental Management.
Within this strand, Earth observation (EO) data are used for monitoring resource efficiency utiliz-
ation, as well as for assessing the progress towards achieving SDGs. The main task of our research in
this project is to contribute to SDG on agriculture aiming at: end hunger, achieve food security and
improved nutrition, promote sustainable agriculture aimed at ensuring sustainable food production
systems and implementing resilient agricultural practices. Other SDGs aim at protection, restoration
and promotion of sustainable use of earth ecosystems, sustainable forests management, and combat-
ing desertification. To reach these goals, specific targets have been set: ensuring the conservation,
restoration and sustainable use of inland freshwater ecosystems and their services; combating deser-
tification by 2020; restoration of degraded lands by 2030. In order to evaluate, how far we are from
achieving these goals, a global indicator framework was developed by the Inter-Agency and Expert
Group on SDG Indicators (IAEG-SDGs). So far, the list includes 232 indicators, on which a general
agreement has been reached. In this paper, we focus on three particular indicators, namely:

. 2.4.1. Proportion of agricultural area under productive and sustainable agriculture;

. 15.1.1 Forest area as proportion of total land area; and

. 15.3.1 Proportion of land that is degraded over total land area.

Within the Global Support Program, a pilot project was set up by the UN Committee on Com-
bating Desertification and the Security Assistance Program with the aim of reaching Land Degra-
dation Neutrality (LDN). The goal of LDN is to maintain or enhance the natural capital of the
land and associated land-based ecosystem services. Land cover change, land productivity dynamics
(LPD) and organic carbon stock are selected as sub indicators for the indicator 15.3.1. Land cover
changes evaluated based on ESA’s Climate Change Initiative (CCI) Land Cover dataset (https://
www.esa-landcover-cci.org/?q=node/175) and EC Joint Research Centre’s (JRC) LPD dataset
(Ivits and Cherlet 2013) are used as default sources for land productivity assessment. The main pro-
blems associated with these datasets are coarse spatial resolution and lower accuracy compared to
regional based products.

Therefore, this study aims to fill the above-mentioned gap by improving the calculation of the
SDG indicators through the use of moderate and high spatial resolution data. The main goal is to
apply and improve the methodologies, which were used for generating global products with coarse
spatial resolution data, to higher spatial resolution data, which will be better suited for regional pro-
ducts and applications. For calculating the selected SDG indicators, we use a food-water-energy
nexus approach based on satellite data, in-situ data, vegetation indices (VIs) and meteorological
data. Since global land cover products have lower accuracy for Ukraine compared to regional pro-
ducts (Kussul et al. 2017a), we use regional land cover maps with high spatial resolution based on
Landsat 8, Sentinel-2 and Sentinel-1 data. These regional land cover maps were produced using
the state-of-the-art methodology based on deep learning approach (Kussul et al. 2014; Kussul
et al. 2012). We also propose a new improved methodology for calculating a land productivity
map based on high spatial resolution satellite data.

2. Method

2.1. Workflows for calculating SDG indicators

From the list of 232 SDG indicators, we present a general workflow for calculating three selected
SDGs indicators as shown in Figure 1.
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GEOEssential ERA-Planet project is focused on the development of workflows for Essential Vari-
ables (EVs) monitoring and SDG estimation using RS data within nexus approach (Lehmann et al.
2019). This nexus approach is considering environmental system as model constructed from food,
water and energy components and relationships between them (Biggs et al. 2015). Thus, EVs can
often belong to more than one nexus approach component. Within the project, the list of EVs for

Figure 1. Workflow for calculating Sustainable Development Goals indicators 15.1.1, 15.3.1 and 2.4.1.

Figure 2. Food, water, energy Essential Variables that are used in SDG indicator 15.1.1, 15.3.1, 2.4.1 workflows.
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food-water-energy nexus approach was created and described in deliverable 6.1 ‘Description of Food
Water Energy EVs’ (McCallum et al. 2019). Workflows for indicators 15.1.1, 15.3.1 and 2.4.1 based
on EVs (Figure 2) related to food, water, energy nexus approach were developed.

EVs from the food security domain include crop area and crop type represented by crop classifi-
cation map, crop condition assessment and crop phenology characterized by vegetation indices (VIs)
as such as NDVI, DVI, EVI (Kogan et al. 2013), and biophysical parameters such as leaf area index
(LAI) (Shelestov et al. 2017a). For better estimation of crop condition and crop phenology with the
use of VI, weather data that relate to Water and Energy Essential Variables are valuable. Water and
Energy Essential Variables include precipitation, evaporation, surface air temperature, solar surface
irradiation, humidity, and wind speed. These agrometeorological parameters are essential for VI
modeling and enhancement of satellite-based estimation of crop productivity.

2.2. Workflow for calculating indicator 15.3.1

The indicator ‘15.3.1 Proportion of land that is degraded over total land area’ is a binary, degraded/not
degraded, quantification based on the analysis of available data for sub-indicators to be validated and
reported by national authorities (namely, Trends in Land Cover, Land Productivity and Carbon
Stocks). This indicator is based on statistical principal ‘One Out, All Out’ on evaluation of changes
in the sub-indicator (https://unstats.un.org/sdgs/metadata/files/Metadata-15-03-01.pdf) (Cowie et al.
2018). This principle means that we have three types of changes in the sub-indicators, which are
depicted as positive or improving, negative or declining and sustainable or unchanging. If one of
the sub-indicators has negative changes for some area, then this area has negative productivity.

Our proposed methodology is based on a deep learning approach, in particular an ensemble of
neural networks (Kussul et al. 2017b). At the core of the architecture are multilayer perceptrons
(MLP), which are trained using different parameters and architectures (number of hidden layers),
and form an ensemble, which outperforms any of the individual MLPs. The rectified linear unit
(ReLU) function is used as the activation function for neurons in the hidden layers, and training
of the MLPs is performed using a stochastic gradient-based optimizer proposed by Kingma and
Ba (2014). In order to avoid overfitting, an L2 regularization was used with regularization coefficient
set to 0.1, and learning rate was set to 10−3. A committee of neural networks is used for providing
crop classification and land cover maps for Ukraine using high spatial resolution Landsat 8, Sentinel-
1 and Sentinel-2 imagery (Skakun et al. 2015; Kussul et al. 2016; Kussul et al. 2018; Ghazaryan et al.
2018) and appropriate in-situ data for 2000, 2010, 2016 and 2017 (Shelestov et al. 2017b; Skakun
et al. 2016; Waldner et al. 2016). The spatial resolution of the resulting maps is 30 m for 2000
and 2010, and 10 m for 2016 and 2017 (Figure 3). The overall accuracy is improved by more
than 10% compared to ESA’s Climate Change Initiative Land Cover dataset; the kappa coefficient
for ESA’s Climate Change Initiative Land Cover dataset is 0.75, while the kappa coefficient for
our map is 0.9 (Kussul et al. 2017a). Figure 4 shows the difference between coarse-resolution
ESA’s Climate Change Initiative Land Cover for 2015 and our high-resolution classification map
for 2016 year in Kiev region.

2.3. The use of harmonized Landsat Sentinel 2 data for crop productivity and yield
assessment

Crop productivity is an important parameter to monitor and assess land degradation that is usually
defined as the production of organic matter during the photosynthesis process (Gitelson 2011). Cur-
rent RS based estimates of crop productivity are based on the Monteith approach (Monteith 1972),
which relates production to absorbed photosynthetic active radiation (APAR) and Light Use
Efficiency (LUE) (Bandaru et al. 2013; Prince and Goward 1995). From crop production, crop yields
can be estimated through the harvest index (HI), which provides a ratio between grain mass to
aboveground biomass (He et al. 2018; Prince et al. 2001; Xin et al. 2015). It should be noted that
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crop production is usually accumulated over the growing season, and therefore, estimation of the
crop productivity requires the use of high-temporal satellite data. Until recently, such requirement
was mainly fulfilled with coarse spatial resolution data, for example Moderate Resolution Imaging
Spectroradiometer (MODIS), which provides daily observations. With the availability of Landsat
8 and Sentinel-2 data, it becomes possible to provide data every 3–5 days (Li and Roy 2017).

A Normalized Difference Vegetation Index (NDVI) has usually served as a proxy for RS-based
estimation of crop yields or fraction of Absorbed Photosynthetically Active Radiation (fAPAR)
(López-Lozano et al. 2015; Shelestov et al. 2017a). However, when dealing with a moderate spatial
resolution at 10-30 m saturation can occur for high biomass plants (Gitelson 2011). For example,
Skakun et al. (2017) showed that Landsat 8/Sentinel-2 derived NDVI saturated for winter wheat
with yields >4 t/ha in Ukraine. Therefore, other indices should be tested to reduce the effect of sat-
uration. Here, we use a combination of Landsat 8 and Sentinel-2 data to extract vegetation indices
(VIs) and correlate VIs with crop yields with the aim to estimate crop production following the Mon-
teith model and provide spatially explicit maps (Bandaru et al. 2013). Since Landsat 8 and Sentinel-2
exhibit some discrepancies in terms of geometry and radiometry, we use a NASA’s harmonized pro-
duct called HLS (Harmonized Landsat Sentinel-2), which reduces differences between satellite’s sen-
sors (Claverie et al. 2018). Spectral bands from HLS are used to calculate VIs such as NDVI, and
difference vegetation index (DVI).

Since temperature is a primary factor affecting the rate of crop development, meteorological data
are used as well. In particular, we calculate growing degree days (GDDs) to define the growing season
for which accumulation of RS-derived VIs will take place (Bandaru et al. 2013). For GDD calculation,
we use air temperature derived from NASA’s Modern-Era Retrospective analysis for Research and
Applications (MERRA2) reanalysis data set (Molod et al. 2015). The data sets (daily averaged
2-meter air temperature) were extracted from the netCDF format, transformed to the geo-referenced
raster, subset for study areas and linearly interpolated to the HLS 30 m spatial resolution. A quad-
ratic function between VIs and GDD is used (De Beurs and Henebry 2004).

HLS-derived VIs are correlated with winter wheat yields at a regional scale (district) in Ukraine
(Kirovohradska oblast). Crop yield statistics were collected from the Department of Agro-Industry
Development of Kirovohrad State Administration. To derive VIs only over winter wheat fields, we
used crop specific maps produced for Ukraine for 2016 and 2017 using Landsat 8, Sentinel-1 and
Sentinel-2 data (Kussul et al. 2017b).

Figure 3. Crop classification map at 10 m spatial resolution for Ukraine for 2017.
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2.4. Workflow for calculating indicator 2.4.1

The indicator ‘2.4.1: Proportion of agricultural area under productive and sustainable agriculture’
can be calculated using the same methodology as proposed for indicator 15.3.1 calculation. This indi-
cator is a ratio of agricultural area that has a positive productivity value to the total agricultural area
by the rule ‘One Out, All Out’. For this indicator, we use the same sub-indicators as for indicator
15.3.1, but the area of interest is not the whole land area, but rather the agricultural (cultivated)

Figure 4. Visual comparison of the (a) 300m landcover ESA CCI-LC and with the (b) 10m crop classification map for Kiev.
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land. For this indicator, the use of high spatial resolution satellite images is particularly important,
since mixed pixels greatly affect the value of sub-indicator changes.

2.5. Workflow for calculating indicator 15.1.1

The indicator ‘15.1.1 Forest area as proportion of total land area’ is a ratio of all land area to forest
area. We estimate total land area, removing water and wetland areas, using classification map, and
then calculate this indicator as proportion of forest area to total land area.

2.6. Implementation of the SDG indicator’s workflows in the Virtual Laboratory

In the ECOPotential project (http://www.ecopotential-project.eu), several partners are responsible
for generating heterogeneous resources such as satellite data, in-situ data, services, analysis and mod-
eling tools, processing algorithms, models/workflows and models results. These resources need to be
discoverable and accessible to all project partners as inputs for ecosystems and ecosystem services
study, as well as to various categories of external users. To address these requirements, an interoper-
ability framework, that was developed as a Virtual Laboratory (VLab: https://vlab.geodab.eu/), pro-
vides a web service-based access to the resources. VLab is a new efficient and perspective way for
scientists to carry out research aimed at the use of large satellite and in-situ measurement data sup-
plied by the GEOSS Platform. Using cloud computing resources, with direct access to data of the
GEOSS Portal, VLab has the ability to introduce workflows to calculate and monitor essential vari-
ables of water, food and energy and, accordingly, to calculate SDGs indicators for different countries
around the world. We use the VLab tool to calculate the indicator 2.4.1 and 15.3.1. The benefits of
using VLab are an opportunity to implement complex workflows in a cloud platform with an easy
access to data from GEOSS and other major data providers and the possibility of knowledge gener-
ation for ECOPotential storylines.

A workflow for indicator 2.4.1 calculation in VLab takes as an input a classification map with agri-
cultural classes of land cover and a time series of satellite images for several years. Based on the time
series of satellite images, we estimate an NDVI trend for these several years. Under the productivity
in each pixel, we consider the slope of the trend line. Thus, our script calculates total agricultural land
area and land area with positive productivity (sustainable and productive agriculture) based on crop
classification map and productivity map. As an output, it gives the indicator 2.4.1 for the selected
territory as a proportion of total agricultural land area to productive and sustainable agriculture
(Figure 5).

Figure 5. Workflow for indicator 2.4.1 implementation in VLab.
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Implementation of the workflow for indicator 15.3.1 in VLab takes land cover change map and
land productivity map as inputs, calculates area of productive land and total area of land, and outputs
their ratio (Figure 6).

Workflows are implemented as python scripts in the docker that can be imported in Vlab plat-
form with further workflow launch. The SGD indicator 2.4.1 calculation workflow is available via
GitHub (https://github.com/LeonidShumilo/Vlab_241). To run this workflow (available as a test
model at the VLAB site), a VLAB-user should provide an input URL to download Landsat-8 and
Sentinel-2 data jointly with classification map for the territory of interest. After data processing,
the workflow will produce a text file with the value of SDG indicator 2.4.1 for the territory of interest.

The second workflow is implemented in a similar way and available via a GitHub repository
(https://github.com/LeonidShumilo/Vlab1531). In this use case, a VLAB user should provide an
input URL to download land cover change map and land productivity map. As an output, the
workflow generates a text file with a value of the SDG indicator 15.3.1 for the territory of interest.
The similar implementation for the SDG indicator 15.1.1 is available via GitHub repository
(https://github.com/LeonidShumilo/Vlab1511).

3. Results

3.1. HLS for crop productivity and yield assessment

Figure 7 shows a quadratic relationship between NDVI and DVI against accumulated GDD for a
winter wheat field. The peak of the crop growth is around 900°C in Ukraine, which corresponds

Figure 6. Workflow for indicator 15.3.1 realisation in VLab.

Figure 7. Examples of VIs (NDVI and DVI) fitting versus accumulated GDD for a winter wheat field in 2017.
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to the previous study from MODIS data (Franch et al. 2015). Both relationships exhibit high coeffi-
cient of determination (R2), however NDVI quickly reaches the value around 0.8 (at around GDD =
500), and does not change that much until crop maturity stage.

For each pixel identified as winter wheat, accumulated NDVI and DVI were calculated, averaged
over administrative units (districts) and correlated with official statistics on yields. The derived
relationships for 2016–2017 are shown in Figure 8.

While for 2017, both approaches show good performance with R2 = 0.6–0.65, for 2016 the DVI-
based approach outperformed the NDVI-based approach. Coefficients in the DVI regressions are
more consistent (for both 2016 and 2017) which allows a more robust relationship retrieval for mul-
tiple years. Having these relationships in place, one can analyze winter wheat productivity through
multiple years and monitor its changes.

3.2. SDGs indicators

Using the proposed workflow shown in Figure 1, we calculated indicators 15.1.1, 15.3.1 and 2.4.1 for
the territory of Ukraine. Forest and total land area values were derived from land cover maps for
2000, 2010 and 2016. Thus, indicator 15.1.1 was calculated as a proportion of forest and total
land area for these years (Table 1). We could see the positive trend when using statistics data as
well as with satellite data. It means that in Ukraine, forest plantations dominate deforestation.

A land productivity map has been obtained using NDVI based on high-resolution Sentinel-2 and
Landsat-8 satellite images for 2013–2017 years. In Figure 9, a comparison of coarse resolution pro-
ductivity map based on MODIS data and our high-resolution productivity map is shown for Ukraine
territory for 2017. Using our high-resolution productivity map and crop classification map we cal-
culated indicators 15.3.1 and 2.4.1 for territory of Ukraine for 2016 and 2017. Combined values of
indicators 15.3.1 and 2.4.1 for 2016 and 2017 are shown in Table 2.

We can observe a positive dynamic in productivity growth for all land from 46.19% to 48.24% and
for agricultural land from 37.6% to 42.8%, but the area with negative trend of vegetation index is still
more than 29,046 thousand ha. The growth can be explained by the introduction of effective agri-
cultural practices, the establishment of harvesting systems (Fileccia et al. 2014; Lesiv et al. 2018),
but usually these actions are carried out in large agricultural lands or in fields belonging to large agri-
cultural enterprises, so this large part of the land with a negative trend still exists. Particularly

Figure 8. Relationship between accumulated NDVI and DVI against winter wheat yields for 2016 and 2017.

Table 1. Forest area as a proportion of total land area by statistics and our classification maps in 2000, 2010 and 2016 years.

2000 2010 2016

Statistics 0.172 0.172 0.176
Classification maps 0.176 0.179 0.189

INTERNATIONAL JOURNAL OF DIGITAL EARTH 9



highlighted with the negative value of productivity, we find: Eastern Ukraine and Crimea due to the
deterioration of the situation and problems with access to water; and Western Ukraine through
deforestation. If we consider general growth, then, in addition to improving the conditions of agri-
cultural land in Ukraine, there is a restoration of cut down forests, which provide improvement each
year with a significant trend of vegetation. According to the State Agency for Forest Resources of
Ukraine, 52.6 thousand hectares of forest was restored in 2016, and 53.2 thousand ha in 2017.

4. Conclusions

In this paper, we proposed an improved workflow based on satellite data, in-situ data, Essential Vari-
ables, vegetation indexes (VI) and meteorological data for calculating three SDG indicators ‘2.4.1
Proportion of agricultural area under productive and sustainable agriculture’, ‘15.1.1 Forest area
as proportion of total land area’ and ‘15.3.1 Proportion of land that is degraded over total land
area and indicator’. Within a pilot project of the UN Committee on Combating Desertification
and the Security Assistance Program, a methodology for calculating index 15.3.1 was developed.
It is based on ESA’s Climate Change Initiative Land Cover dataset and JRC LPD dataset. These data-
sets are global and therefore have coarse spatial resolution and not perfectly accurate. Thus, we used
land covers provided by our deep learning methodology based on high spatial resolution imagery
from Landsat, Sentinel-2 and Sentinel-1 for Ukraine territory. Quality and accuracy of such land

Figure 9. Comparison coarse resolution productivity map based on MODIS data and our high-resolution productivity map for
Ukraine territory for the year 2017.

Table 2. Indicators 15.3.1 and 2.4.1 for territory of Ukraine for 2016 and 2017 years.

2016 2017

Indicator 15.3.1 46.19% 48.24%
Indicator 2.4.1 37.6% 42.8%
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covers are much higher than global ones (gain is approximately 10%). Also, in this study, we pro-
posed a new methodology for generating a land productivity map using high spatial resolution Sen-
tinel-2 and Landsat-8 data that allow us to calculate indicator 15.3.1 and other derivatives indicators
15.1.1 and 2.4.1 more precisely. We conclude that newly available high-resolution RS products can
significantly improve our capacity to assess several SDGs indicators through dedicated workflows
from data to indicators and through essential variables.

SDG indicators estimation for goal 15 ‘Life on land’ and goal 2 ‘Zero hunger’ are highly dependent
on land cover data. The up-to-date land cover with high enough spatial and temporal resolution (at
least on annual basis) is crucial for execution of corresponding workflow. In order to further scale the
proposed approach to regional/global levels, training data are required that can be collected publicly
from available datasets such as Open Street Maps with land cover information. Furthermore, open-
source platforms with a possibility to download street-level imagery and global land cover products
could be used for generating training datasets at a global scale. Another approach is to develop pre-
trained classification models using a wide range of agro-climatic conditions for land cover mapping
on a global scale.
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