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1. Introduction 
 
Global monitoring of Sustainable Development Goal (SDG) 6 – ensure availability and sustainable 
management of water and sanitation for all – was initiated in early 2017 following development, testing, 
and evaluation of methodologies for monitoring the associated indicators. Target 6.6 of SDG 6 calls for 
the protection and restoration of water-related ecosystems, including mountains, forests, wetlands, rivers, 
aquifers and lakes. The first indicator of this target, Indicator 6.6.1, tracks changes over time in the extent 
of water-related ecosystems. UN Environment is the custodian agency for this indicator and has 
developed a step-by-step methodology that explains how to monitor change in the extent of water-related 
ecosystems over time, including definitions, computational steps, and recommendations on spatial and 
temporal resolutions. Custodian agencies are charged with producing methodologies for collecting data 
from national data sources and tracking progress, as well as contributing towards statistical capacity 
building, among other key activities. While analysis of ground-based, survey data and in-situ 
measurements serves as an important part of the reporting process, there is potential for countries to 
utilize satellite-based Earth observations (EO) to meet some of the reporting requirements of Indicator 
6.6.1, pertaining to both spatial extent and quality of open waterbodies and wetlands.  
 
In collaboration with the Group on Earth Observations (GEO) and space agencies such as NASA, ESA, 
and JRC, UN Environment has identified a series of activities that focus on the use of EO to support the 
monitoring and data collection process for Indicator 6.6.1. These pilot efforts do not intend to replace the 
country-owned process of SDG data collection and submission; rather, they intend to explore the 
applicability of EO data to complement country-generated data.  
 
This document provides an overview of the datasets and methodology used by a NASA-University of 
Maryland team to demonstrate the potential for EO data to be used for monitoring the SDG Indicator 
6.6.1. For the purpose of this document, EO data is defined as data that is gathered via remote sensing 
technologies. The current assessment focuses on the ecosystem categories of vegetated wetlands (coastal 
mangroves only) and inland waters (rivers and estuaries, lakes and reservoirs). Two of the three principle 
water ecosystem sub-indicators, as defined by the UN Water publication “Integrated Monitoring Guide 
for SDG 6”, are measured: the spatial extent of water-related ecosystems, and the quality of water within 
these ecosystems. It is noted that a fourth sub-indicator, to measure the state or health of ecosystems, is 
also listed as a sub-indicator for Indicator 6.6.1, however it does not form part of the aggregated 6.6.1 
index – rather, this is kept for national level reporting and to assist w/ restoration activities Datasets used, 
methodologies and preliminary results for the following aspects of the indicator are provided in this 
report:   
 

1. Spatial extent for open waterbodies, 
2. Total Suspended Solids and Chlorophyll for inland waterbodies, 
3. Spatial extent for coastal mangroves. 

 
Each section provides an overview of the datasets and tools used – including spatial resolution, required 
software, data output format and relevant publications – as well as the methodology used and results in 
terms of country-level statistics, where applicable. The methodologies shared in this report are not a 
comprehensive summary of the steps required to extract relevant information from raw remote sensing 
data, but rather an overview of the steps that should be taken to analyze existing pre-processed datasets 
stemming from remote sensing, in order to meet the goals for baseline SDG reporting.  

2. Overview of the pilot study 
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The goal of the pilot study is to extract information relevant to meeting the reporting requirements of 
SDG Indicator 6.6.1 from EO data for a select group of pilot countries, utilizing openly available, free of 
charge datasets and tools (see Table 1). In this regard, the study serves as a proof of concept for the use of 
EO data in SDG reporting. In its custodian agency role, UN Environment will subsequently aim to 
efficiently distribute the successful methods and datasets to countries to support their data-driven 
decision-making regarding this indicator.  
 

 
Figure 1 – Map of the countries considered in this pilot effort, with the parameters/sub-indicators investigated.  

As shown in Figure 1, for the extent of open waterbodies, the pilot countries included Cambodia, Jamaica, 
Peru, Philippines, Senegal, Uganda and Zambia. A proof of concept for the extraction of the water quality 
indicators of Total Suspended Solids and Chlorophyll was also provided for select large open waterbodies 
in the countries of Peru, Senegal and Zambia. Pilot countries for the spatial extent of coastal mangroves 
included Jamaica, Peru and Senegal. It is important to note that the pilot countries ranged in size and 
spatial complexity in terms of landscape variability, thus covering a range of capabilities for the 
application of the EO data. Where possible, country-level statistics were extracted, reporting on the area 
of water and coastal mangrove extent, as would be required by all countries for their SDG reporting. It is 
noted that this document serves as a general guide for the potential use of EO data in meeting some of the 
reporting requirements for the SDG Indicator 6.6.1 and is in no way providing official country baseline 
values for the indicator.  The derived datasets will ultimately be published on an online database, and in 
the meantime, can be provided to interested parties upon request. More information and updates are 
available on http://eo4sdg.org/earthobservations-for-sdg6monitoring/. 
 

 
Table 1 - Summary of the components measured and datasets used for the pilot study. Note: Copernicus Sentinel data is 
processed by the European Space Agency, and was retrieved in 2017 for this effort. 
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3. Mapping and quantifying the spatial extent of open waterbodies (using 
MOD44W C6.1) 
 
3.1. Overview 
 
Water Ecosystem(s) Measured: Open water 
 
Sub-indicator(s) Measured: Spatial extent  
 
Dataset(s): MOD44W C6.0 
 
Data Source(s):  
This dataset is a collection of global, annual water maps in raster format. These datasets were created by 
applying a water identification algorithm to data from the MODerate Spatial Resolution Imaging 
Spectrometer (MODIS), on board the Terra satellite. The data shows normal surface water extent for each 
year. The data is available for every year from 2000 through 2015, and for every major land mass, 
excluding Antarctica. Figure 2 shows the MOD44W C6.0 dataset for Lake Bangweulu, Zambia, in the 
year 2014. 
 
 

 
Figure 2 - A) False color composite (6-2-1) MODIS surface reflectance image (MOD09A11) of several lakes, the largest of 
which is Lake Bangweulu, and associated swamps in Zambia. Imagery is an 8-day composite collected from a period beginning 
on 7/12/13. B) The annual water dataset, MOD44W C6.0 (Carroll et al., 2017), overlain in blue, showing measured spatial 
extent of open water for the year 2013. 1Vermote, E., et al., 2015, MOD09A1: MODIS/Terra Surface Reflectance 8-Day L3 
Global 500m SIN. Version 6. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) 
Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov), accessed 06 23, 2017, at http:// 
dx.doi.org/10.5067/MODIS/MOD09A1.006 

Spatial Resolution: 250 m 
 
Required Software: ArcGIS, QGIS, or other desktop GIS application 
 

A	 B	
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Output Format(s): Geo-referenced raster dataset (e.g. GeoTIFF) 
 
Relevant Publications:  
Publication of the data is still in progress, but it can be cited as: 

• Carroll, M.L., DiMiceli, C.M., Hubbard, A.B., Wooten, M.R., Sohlberg, R.A., Townshend, 
J.R.G. (2017). Global Raster Water Mask at 250 meter Spatial Resolution (MOD44W) Collection 
6.0. 

A user guide will be released at the same time as this data. Also, the algorithm used to create this data was 
previously described in the following paper: 

• Carroll, M.L., Townshend, J.R., DiMiceli, C.M., Noojipady, P., & Sohlberg, R.A. (2009). A new 
global raster water mask at 250 m resolution. International Journal of Digital Earth, 2, 291-308 

 
3.2. Methodology 
 
To measure the area of water in a given area at a given time, the GeoTIFF rasters associated with this 
dataset are needed, a polygon shapefile covering the area of interest, and a computer running a desktop 
GIS application. Obtaining the latter two items is beyond the scope of this guide. This guide will 
recommend specific procedures based on the assumption that users are working in ArcGIS, but analogous 
operations are most likely available in other GIS applications. As for the open water dataset itself, 
MOD44W C6.0 will ultimately be published on an online database, and this guide will be updated with 
the relevant links at that time. For now, the necessary data files will be made available by NASA to 
interested parties. 
 
Each year of data has a separate set of raster files. The following procedure applies to one year of data, 
and it should be repeated when analyzing multiple years. Including multiple years is recommended in 
most cases, because water extent can change considerably from year to year. 
 
The GeoTIFF files that make up MOD44W C6.0 are organized according to the MODIS tiling system 
(https://modis-land.gsfc.nasa.gov/MODLAND_grid.html), which divides the globe into a grid of square 
tiles. The first step is to determine which tiles overlap the area of interest and, if there is more than one of 
them, mosaicking (i.e. combining) those into one dataset. An image of the MODIS tiling system is 
provided in the above hyperlink, which can help determine which tiles are necessary. Many tools exist for 
mosaicking images. To do so in ArcMap, one of two tools/operations can be used: “Create Mosaic 
Dataset” and “Add Raster to Mosaic Dataset” tools, or the “Mosaic to New Raster tool.” 
 
Once the raster or rasters of interest are obtained, the next step is to use the shapefile demarking the area 
of interest to mask out areas that are not inside this area. This shapefile could be the boundary of a 
country, the boundary of a sub-national administrative unit, a polygon enclosing a specific waterbody, or 
any other polygon shapefile. If the polygon is intended to enclose a specific waterbody, it is 
recommended that the polygon be created to leave a significant buffer area around the waterbody in 
question. Many waterbodies fluctuate significantly over the course of time, and a shape drawn based on 
one image or map may not contain the entire waterbody in a different image. Regardless of the source of 
the polygon shapefile, the procedure to use it with the water data remains the same. Use a tool, such as 
Extract by Mask in ArcGIS, to extract the portion of the water raster that intersects this polygon into a 
new raster file. This new raster should only contain data where it overlaps the polygon of interest. 
 
Finally, to get the area of water for this region, open the attribute table for the new raster file that was 
created above. In ArcMap, this can be accomplished by right-clicking the layer in the Table of Contents 
and selecting “Open Attribute Table.” In this table, the count of pixels for each raster value is displayed. 
Water is signified by a “1” in this dataset, and so the count of pixels that have a value of “1” is of interest. 
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This count can be converted to area by multiplying by the area of a pixel. For this dataset, that area is 
(231.65635 m)2, or 53664 m2, or 0.05366 km2. The result of this multiplication is the area of surface water 
within the polygon of interest, as measured in the MOD44W C6.0 dataset. 
 
3.3. Results 
 
Table 2 – Spatial extent of open waterbodies for the seven pilot countries, extracted using the MOD44W C6.0 dataset, as 
described in the above methodology. The reported areas represent the spatial extent of national open waterbodies for different 
years. 

Country 2011 [km2] 2012 [km2] 2013 [km2] 2014 [km2] 2015 [km2] 

Cambodia 9465.16 5458.50 7507.36 6538.18 4645.21 

Jamaica 29.41 27.48 29.14 29.41 29.68 

Peru 13136.25 13681.16 13476.70 13005.85 13163.19 

Philippines 6410.03 6338.82 6393.55 6366.45 6415.02 

Senegal 1495.42 1478.30 1509.53 1460.16 1399.95 

Uganda 36570.97 36610.79 36634.72 36599.68 36659.67 

Zambia 12404.53 12443.71 12312.12 13097.40 12057.16 
Source of Administrative boundaries: The Global Administrative Unit Layers (GAUL) dataset, implemented by FAO within the 
CountrySTAT and Agricultural Market Information System (AMIS) projects. 
 
3.4 Contributors  
 
Alfred Hubbard, Mark Carroll, and Frederick Policelli all contributed to the preparation of materials for 
NASA’s support of this SDG initiative. For the authors involved in the creation of MOD44W C6.0, 
please see the above citation.  

 

4. Mapping and quantifying the spatial extent of open waterbodies (using 
Landsat) 
 
4.1. Overview 
 
Water Ecosystem(s) Measured: Open water 
 
Sub-indicator(s) Measured: Spatial extent  
 
Dataset(s): Landsat 5, 7, 8 archive 
 
Data Source(s): > Not currently hosted anywhere 
 
Spatial Resolution: 30 m 
 
Required Software: Any geographic software, e.g. QGIS, PCI, ArcMap, ERDAS, etc. 
 
Output Format(s): GeoTiff 
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Relevant Publications:  
Quantifying global monthly water dynamics 1999-2017 (In Preparation) Pickens, A.H., Hansen, M.C., 
Hancher, M.D., Potapov, P. 
 
4.2. Methodology 
 
The GLAD water dynamics layers were created through an automated process mining the entire 1999-
2015 Landsat 5, 7, and 8 archive. A quality assessment (QA) model, which was developed locally, was 
applied to every single scene with the computing power of Google Earth Engine. 
 
After conversion to top of atmosphere (TOA) reflectance, each scene was classified into land, water, 
cloud, shadow, haze, and snow and ice. This was done via five heirachical sets of seven bagged 
classification trees utilizing all the image bands, ratios of each pair of bands, and 3x3 pixel spatial 
averages of all bands and ratios. Elevation and derived slope and aspect data were used as additional 
metrics. Elevation was taken from Shuttle Radar Topography Mission (SRTM) elevation for everywhere 
south of 60°N, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) for everywhere 
north of 60°N. These classification trees were built from a training set of 120-160 fully classified scenes 
per sensor.  
 
All of the land and water observations of a given pixel are summed per month per year. From these layers 
the data is further aggregated into seasonal and annual water presence frequency, measured by the percent 
of clear observations flagged as water. An interannual trend model has been applied per season and for all 
twelve months together that is able to capture the broad dynamics of surface water extent through the 
entire time period (Figure 1). All layers have 0.00025° resolution, which is equivalent to 28m at the 
equator. 
 
For the UNEP baseline of 2013-2015, if more than 50% of the observations without cloud, haze, shadow, 
or snow from those years are labelled water, then the pixel is labelled water for the baseline map. Pixels 
that only no land or water observations for all three years are labelled no data. The resulting map 
represents permanent and semi-permanent inland water. The area of all water pixels is summed to find the 
spatial extent of open waterbodies (Table 1). 
 
4.3. Results 
 
Table 3 – Spatial extent of open waterbodies for the seven pilot countries, extracted using Landsat data, as described in the 
above methodology. The spatial extent was calculated by summing the area of all the persistent water pixels in the baseline 2013-
2015 layer within each country boundary. The initial data volume represents the terabytes (TB) of Landsat data that was 
processed.  

Country Assessment period Spatial extent of national 
open waterbodies (km2) Initial Data Volume (TB) 

Cambodia 2013-2015 6469 1.81 

Jamaica 2013-2015 38 0.56 

Peru 2013-2015 18210 6.98 

Philippines 2013-2015 7002 3.93 

Senegal 2013-2015 2012 2.16 
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Uganda 2013-2015 36257 2.43 

Zambia 2013-2015 13734 5.54 
Source of Administrative boundaries: The Global Administrative Unit Layers (GAUL) dataset, implemented by FAO within the 
CountrySTAT and Agricultural Market Information System (AMIS) projects. 
 
 

 
Figure 3 – Interannual surface water dynamics 1999-2015 for all 12 months in Peru. The zoom window on the right shows the 
meandering rivers as well as new ponds for mining operations in Madre de Dios. 

4.4. Contributors 
 
Amy Pickens, Matthew Hansen, Matthew Hancher, Peter Potapov  
 
 

5. Mapping and quantifying concentrations of Total Suspended Solids and 
Chlorophyll for inland waterbodies 
 
5.1. Overview 
 
Water Ecosystem(s) Measured: Inland waters 
 
Sub-indicator(s) Measured: Water quality (Concentration of Total Suspended Solids and Chlorophyll) 
 
Dataset(s): Landsat-8 and Sentinel-2A 
 
Data Source(s): https://earthexplorer.usgs.gov ; https://scihub.copernicus.eu/dhus/ 
 
Spatial Resolution: Landsat-8: 30m; Sentinel-2A: All bands resampled to 20m 
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Required Software: https://seadas.gsfc.nasa.gov 
 
Output Format(s): netcdf  
 
Relevant Publications: 
Gordon, H.R., & Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical thickness over 
the oceans with SeaWiFS: a preliminary algorithm. Appl. Opt., 33, 443-45 
 
Nechad, B., Ruddick, K., & Park, Y. (2010). Calibration and validation of a generic multisensor 
algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114, 
854-866 
 
O’Reilly, J.E., Maritorena, S., Siegel, D.A., O’Brien, M.C., Toole, D., Mitchell, B.G., Kahru, M., Chavez, 
F.P., Strutton, P., & Cota, G.F. (2000). Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and 
OC4: Version 4. SeaWiFS postlaunch calibration and validation analyses, part, 3, 9-23 
 
Pahlevan, N., Sarkar, S., Franz, B.A., Balasubramanian, S.V., & He, J. (2017a). Sentinel-2 MultiSpectral 
Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. 
Remote Sensing of Environment, 201, 47-56 
 
Pahlevan, N., Schott, J.R., Franz, B.A., Zibordi, G., Markham, B., Bailey, S., Schaaf, C.B., Ondrusek, M., 
Greb, S., & Strait, C.M. (2017b). Landsat 8 remote sensing reflectance (R rs) products: Evaluations, 
intercomparisons, and enhancements. Remote Sensing of Environment, 190, 289-301 
 
Tyler, A.N., Hunter, P.D., Spyrakos, E., Groom, S., Constantinescu, A.M., & Kitchen, J. (2016). 
Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and 
shelf-sea waters. Science of the Total Environment, 572, 1307-1321 
 
5.2. Methodology 
 
With the high-frequency revisit time of combined Landsat (a NASA-USGS mission) and Sentinel-2 (an 
ESA mission) satellites, it is now possible to utilize the respective satellite products for regular 
monitoring of aquatic systems in nearshore coastal and inland waters (Tyler et al. 2016). EO data can only 
provide information on concentrations of in-water materials that affect the color of water. These materials 
include chlorophyll-a (Chl), which is the primary pigment in phytoplankton (the primary source of food 
for organisms), and the total suspended solids (TSS).  The concentrations of Chl and TSS can be used as 
proxies to infer other important parameters like oxygen level, nutrients, or chemicals. For instance, high 
TSS in a water body can often mean higher concentrations of bacteria, nutrients, pesticides, and metals in 
the water. Chl and TSS are both listed as SDG indicators require monitoring in lakes and riverine 
systems.     
 
In this study, we use widely used empirical algorithms to produce concentrations of TSS and Chl in 
different lake systems in Zambia, Peru, and Senegal. While the TSS algorithm uses information in the red 
spectral bands (Nechad et al. 2010), the Chl retrieval is based upon the heritage ocean color algorithm 
(O’Reilly et al. 2000), which uses band ratio of green and blue bands. The Landsat-8 and Sentinel-2A 
images are processed using NASA’s SeaWiFS Data Analysis System (SeaDAS) 
(https://seadas.gsfc.nasa.gov). The system conducts atmospheric correction (Gordon and Wang 1994) and 
then applies atmospherically corrected in-water reflectance to derive TSS and Chl.   
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We chose five different aquatic systems, namely Lake Bangweulu in Zambia, Lake Titicaca and Lake 
Chinchayqucha in Peru, Casamance River and Lake Guiers in Senegal. We chose arbitrary locations 
within each system to plot the relative changes in Chl and TSS over time since 2013. The data extracted 
over selected areas, i.e., 6×6- and 9×9-element windows from OLI and MSI products, respectively.  In 
this analysis, the relative variations in OLI- and MSI-derived products are of interest and the 
precision/accuracy in retrievals of TSS or Chl is beyond the scope of this research. 
 
 

 
5.3. Results 
 
The time-series begin two months after Landsat-8 launch, i.e., Feb 13th 2013, and data points show 
retrievals when valid OLI or MSI data products are available, i.e., cloud-less conditions. In the following 
plots, TSS and Chl are provided in units of gm-3 and mgm-3. One example of the spatial distributions of 
TSS and Chl is shown (left) for each site. The dynamics of water quality in different bodies of waters is 
inferred from the temporal plots. In particular, it is noted that satellite data products can detect anomalies 
in water quality conditions if processed via appropriate tools. The time-series plots are shown for an area 
marked with a cross in the map to the left. 

Senegal Peru 

Zambia 

Fig. 4. Five different lakes (highlighted in with red boxes) in Zambia, Peru, and Senegal studied here.    

Senegal Peru 

Zambia 

Figure 4 - Five different lakes (highlighted in with red boxes) in Zambia, Peru, and Senegal studied here.    
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Lake	Chinchayqucha	 Landsat	 Sentinel	

Figure 5 - Dynamics of TSS and Chl shown for the 2013-2017 period. The data points correspond to the location marked with the 
red cross. The temporal TSS (g/m3) and Chl (mg/m3) products clearly show different variations. Anomalies can fairly easily be 
detected using these plots (e.g., Dec 2014 and Dec 2016 show relatively significant rise in TSS and Chl concentrations are 
significantly high in June 2016 and June 2017.) 

Lake	Chinchayqucha	 Landsat	 Sentinel	

Figure 6 - Dynamics of TSS and Chl shown for the 2013-2017 period. The data points correspond to the location marked with the 
red cross. The temporal TSS (g/m3) and Chl (mg/m3) products clearly show different variations. Anomalies can fairly easily be 
detected using these plots (e.g., Dec 2014 and Dec 2016 show relatively significant rise in TSS and Chl concentrations are 
significantly high in June 2016 and June 2017.) 
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Landsat	 Sentinel	

Figure 7 - Dynamics of TSS and Chl shown for the 2014-2017 period. The data points correspond to the location marked with 
the red cross. The temporal TSS (g/m3) and Chl (mg/m3) products clearly show different variations. Anomalies can fairly easily 
be detected using these plots. The TSS concentrations are high (relative to average) in March and November of 2015during 
which Chl concentration also peaks.  

Landsat	 Sentinel	

Figure 8 - Dynamics of TSS and Chl shown for the 2014-2017 period. The data points correspond to the location marked with 
the red cross. The temporal TSS (g/m3) and Chl (mg/m3) products clearly show different variations. Anomalies can fairly easily 
be detected using these plots. The TSS concentrations are high (relative to average) in March and November of 2015during 
which Chl concentration also peaks.  
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Landsat	 Sentinel	

Fig. 7. Dynamics of TSS and Chl shown for the 2013-2017 period. The data points correspond to the location marked with the red 
cross. Anomalies in recent years can fairly easily be detected using time-series plots. The TSS concentrations are high (relative to 
average) in March and November of 2015during which Chl concentration also peaks. Chl concentrations indicate three major 
anomalies in spring of 2016 and 2017. 

Landsat	 Sentinel	

Figure 9 - Dynamics of TSS and Chl shown for the 2013-2017 period. The data points correspond to the location marked with the 
red cross. Anomalies in recent years can fairly easily be detected using time-series plots. The TSS concentrations are high (relative 
to average) in March and November of 2015during which Chl concentration also peaks. Chl concentrations indicate three major 
anomalies in spring of 2016 and 2017. 
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Landsat	 Sentinel	

Figure 10 - Dynamics of TSS and Chl shown for the 2013-2017 period. The data points correspond to the location marked with 
the red cross. Anomalies in recent years can fairly easily be detected using time-series plots. The Chl concentration indicates a 
major peak in Feb 2017. The TSS concentrations do not show any particular peaks or trends.  

Landsat	 Sentinel	

Figure 11 - Dynamics of TSS and Chl shown for the 2013-2017 period. The data points correspond to the location marked with 
the red cross. Anomalies in recent years can fairly easily be detected using time-series plots. The Chl concentration indicates a 
major peak in Feb 2017. The TSS concentrations do not show any particular peaks or trends.  
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Landsat	 Sentinel	

Figure 12 - Dynamics of TSS and Chl shown for the 2013-2017 period. The data points correspond to the location marked with the 
red cross. Anomalies in recent years can fairly easily be detected using time-series plots. Very high Chl concentrations can be 
observed on a regular basis. The average Chl concentration significantly increase since March 2017. Two major peaks November 
of 2014 and 2016 may indicate a major rainfall event.  

Landsat	 Sentinel	

Figure 13 - Dynamics of TSS and Chl shown for the 2013-2017 period. The data points correspond to the location marked with the 
red cross. Anomalies in recent years can fairly easily be detected using time-series plots. Very high Chl concentrations can be 
observed on a regular basis. The average Chl concentration significantly increase since March 2017. Two major peaks November 
of 2014 and 2016 may indicate a major rainfall event.  
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5.4. Contributors 
 
Nima Pahlevan, Brandon Smith, and Sandeep Chittimalli 

 

6. Mapping and quantifying the spatial extent of coastal mangroves 
 
6.1. Overview  
 
Water Ecosystem(s) Measured: Vegetated wetlands (coastal mangroves only) 
 
Sub-indicator(s) Measured: Spatial extent 
 
Dataset(s): Landsat 8 OLI, Sentinel-1C, Shuttle Radar Topography Mission Elevation Data 
 
Data Source(s): to be provided 
 
Spatial Resolution: 30 m 
 
Required Software: Google Earth Engine, QGIS (or other Geographic Information Systems Software) 
 
Output Format(s): GeoTiff 
 
Relevant Publications: 
Lagomasino,D., Fatoyinbo, T., Lee, S.K., Feliciano, E., Trettin, C., Shapiro, A., and Mangora, M. Large-
scale assessment of mangrove stand age and growth show rapid colonization in deltas. (in preparation) 
 
6.2. Methodology 
  
The data used for this analysis consisted of 30 m resolution Landsat 8 Operational Land Imager (OLI), 
Sentinel-1C, and Shuttle Radar Topography Mission (SRTM) elevation data. Landsat data were 
preprocessed which included image resampling, conversion to top of atmosphere reflectance, cloud and 
shadow removal and quality assessment, and image normalization. Landsat 8 OLI bands were used as 
inputs for the classification, as well as normalized band ratios Normalized Difference Vegetation Index 
(NDVI), normalized water index, normalized burn ratio, and others outlined in Green et al, 1998). 
Additionally, annual maximum ‘VV’ and ‘VH’ metrics from Sentinel-1C and elevation data from SRTM 
were also resampled and included in the classification. Areas where SRTM elevation was over 50 meters 
and areas where the annual maximum NDVI value were less than 0 were masked out prior to analysis to 
improve the classification. By doing this, areas where the elevation was too high or areas of permanent 
water bodies were removed, respectively. A K-means clustering algorithm was used to generate 60 land 
cover types using 10000 randomly samples points within the area of analysis. Automatic detection of the 
land cover types were then merged into mangrove and non-mangrove classes using visual interpretation 
of the annual 2016 Landsat composite. Google Earth imagery was used extensively as an additional 
reference for the 2016 classification. 

A NDVI anomaly was calculated for each study region using the Landsat image archives. The reference 
period covered Landsat 5TM images from January 1990 through December 1999. Images were 
preprocessed following a similar criterion as the mangrove extent. A mean NDVI value was generated 
from the sum of individual pixels across all the images that were normalized by the number images 
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representing non-null values. The mean NDVI for the reference period (1990-2000) was then subtracted 
from each of the images in the observation period which ranged from January 2000 through December 
2016. The anomaly value from each overlapping pixel was then summed across all the images in the 
collection to determine an overall cumulative anomaly. The cumulative anomaly values were also 
normalized for the total number of images with non-null values for individual pixels. Anomalous NDVI 
values were considered those which fell outside the 5th and 95th percentiles over the study region. Values 
greater than the 95th percentile were considered areas of forested gain, while those values less than the 
5th percentile were characterized as forested areas that were lost. Gains in mangrove area from 2000 to 
2016 were assumed to only occur within the 2016 extent as mapped for this study. Conversely, any loss 
during the 16-year period is assumed to only occur within the mangrove extent in 2000 as mapped by Giri 
et al, 2010. The mangrove extent maps for 2000 and 2016 were used to mask regions of losses and gains, 
respectively, from the NDVI anomaly. 

 
Figure 14 - A) The near-infrared, short-wave infrared, and red bands from Landsat 8 OLI were used to make this 2016 false-
color composite of Northern Peru (Tumbes District). B) Mangrove wetlands in 2016 can be mapped using remote sensing, the 
results of which are shown in dark blue. Open water areas are shown in light blue.  

 
6.3. Results 
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Table 4 – Spatial extent of coastal mangroves for three pilot countries, extracted using Landsat, Sentinel and SRTM data, as 
described in the above methodology.  

Country Assessment period Spatial extent of coastal 
mangroves (km2) 

Senegal 2016 1902.8 

Peru 2016 54.3 

Jamaica 2016 86.6 
Source of Administrative boundaries: The Global Administrative Unit Layers (GAUL) dataset, implemented by FAO within the 
CountrySTAT and Agricultural Market Information System (AMIS) projects. 
 
6.4. Contributors 
 
Lola Fatoyinbo, NASA Goddard Space Flight Center, Biospheric Sciences 
David Lagomasino, University of Maryland, Geographical Sciences 

 

7. Discussion 
 
This document provides a brief description of the methodologies used for the application of specific EO 
datasets to meet the reporting requirements of SDG 6.6.1 in terms of open waterbody water extent, inland 
water quality (two optically detectable parameters) and the extent of coastal mangroves (partially meeting 
the requirement for the monitoring and reporting of wetlands). In addition to sharing an overview of the 
methodology, country-level values are extracted for select pilot countries to demonstrate the potential for 
the application of these methods in SDG reporting. However, these values in no way provide official 
country baseline values for Indicator 6.6.1, as it is the sole responsibility of individual countries to report 
on baseline values for this indicator as well as all other indicators relevant to the SDGs. The document 
serves as a proof of concept for similar future applications and provides a means for countries to replicate 
and adapt the methods to meet their needs. All of the EO datasets that were used are of global coverage 
and freely and publically available, making them a particularly attractive option for data-scarce regions. 
The availability of high-quality, relatively frequent satellite products together with existing 
algorithm/methodologies and validation using in-situ and ground based data also enables reporting on 
relative changes from baseline values over time in a more consistent and systematic manner.  
 
Regarding the two products used to map and measure the extent of open waterbodies, Landsat can resolve 
much smaller features than MODIS, and therefore Landsat-based water products will be able to map 
smaller water bodies than MODIS is able to capture. On the other hand, annual maps created from 
MODIS data, with its daily repeat coverage, have a higher likelihood of accurately measuring surface 
water extent in areas with limited imagery due to cloud cover than those created from sensors with lower 
temporal resolution, such as the Landsat constellation, which between Landsats 7 and 8 images the globe 
once every 8 days. Both Landsat and MODIS water products should only be used to study waterbodies 
that are at minimum the length of several pixels in each dimension, which means Landsat is the most 
appropriate choice for smaller waterbodies, including rivers. MODIS is more appropriate for medium to 
large waterbodies that are either in cloudy areas or that change rapidly; medium to large water bodies that 
do not meet these criteria can be accurately mapped with either sensor. The difference in spatial 
resolution between the two products, along with the different assessment periods and methodologies used 
(due to the nature of MODIS versus Landsat data), accounts for the difference in reported numbers for the 
seven pilot countries. In most cases Landsat estimated a larger extent area for open waterbodies than did 
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MODIS, which is an expected outcome given that Landsat is able to capture more small water bodies and 
rivers.  
 
Water quality measurements from EO data presents an exciting new opportunity for SDG reporting, and 
in general for many end-user communities interested in assessing the health and condition of waterbodies 
over time. The Landsat-Sentinel-2 satellite data, if processed via appropriate tools, enables capturing 
dynamics of SDG water quality indicators, including concentrations of chlorophyll-a (Chl) and total 
suspended solids (TSS), two of the water quality indicators required for reporting. For a more robust use 
of satellite data products for water quality monitoring, a close collaboration between the EO community 
and local/regional authorities is needed. Through a collaborative approach, EO data can help to inform 
ground-based monitoring programs, thus enabling a more cost-effective means for the monitoring of 
water quality. In the future, the NASA Goddard Space Flight Center is planning to develop a satellite-
based water quality warning system. This system can be evaluated and tested for several bodies of water 
in various developing countries having close ties with the UN Environment partners, and contribute 
towards progressive monitoring of Indicators 6.3.2 and 6.6.1.   
 
Although the wetlands mapping methodology shared in this document does not cover all wetlands, the 
mangrove extent data can be used to generate country and district-wide extent estimates, which can be 
applicable for many countries. The data represent an average extent for the year and does not capture the 
highly dynamic nature of mangroves. The supplemental land cover change dataset provides information 
on the long-term trends in mangrove change. Trends of excessive gain or excessive loss can be useful in 
determining key locations for future sustainable development projects, such as those related to coastal 
resilience, in addition to helping countries meet their SDG reporting requirements for Indicator 6.6.1.  
 

	


